Hadoop 基础之搭建环境

前言

本文主要介绍了 Hadoop 的三种运行模式以及配置的方式。

运行模式

Hadoop 的运行模式分为三种:

  1. Standalone(本地模式/单机模式/local模式) 该模式下没有任何守护进程,用户程序和 Hadoop 程序运行在同一个 Java 进程,使用的文件系统是本地文件系统而不是分布式文件系统,此模式下一般用于本地调试。
  2. Pseudo-Distributed(伪集群模式) 在单机上模拟集群模式,各守护进程运行在单独的 Java 进程当中,使用的文件系统是 HDFS
  3. Fully-Distributed(集群模式) 守护进程运行在集群上,使用的文件系统也是 HDFS

配置过程

本次配置基于 Hadoop2.9.2,其中 Standalone 在 CentOS 7.2 系统下进行配置, Pseudo-Distributed 模式在 MacOS 10.14.4 上进行配置,Fully-Distributed 模式在腾讯云主机上进行配置,集群由两台云主机组成,分别运行 Ubuntu 14.04.1 和 CentOS 7.2 系统。

环境准备

  • Java 7/8 Hadoop 2.7.x to 2.x 支持 Java 7/8,其它 Hadoop 版本支持的 Java 版本请点击 🔗 进行查询 下载:

    1
    sudo yum install java-1.8.0-openjdk-devel //centos 安装 Java8,ubuntu 下需要用 apt-get 进行安装

    配置环境变量:

    1
    2
    3
    4
    cd ~
    vi .bash_profile
    export JAVA_HOME=/usr/lib/jvm/jre-1.8.0-openjdk.i386
    source .bash_profile
  • ssh 和 rsync: 用 sshrsync 命令测试后发现 Centos 本身就有,所以无须进行安装。

  • Hadoop

    1
    2
    sudo wget http://mirror.bit.edu.cn/apache/hadoop/common/hadoop-2.9.2/hadoop-2.9.2.tar.gz
    tar -zxvf hadoop-2.9.2.tar.gz

    这里的下载地址最好根据云主机所在的区域进行选择,如果是国内的云主机最好使用国内的镜像地址,这样下载会快很多。

Standalone 模式

下载解压之后的 Hadoop 默认就是 Standalone 模式,可直接运行 wordcount 进行测试

1
2
3
4
5
mkdir input //hadoop 的同级目录创建
cp hadoop-2.9.2/LICENSE.txt input/

hadoop-2.9.2/bin/hadoop jar hadoop-2.9.2/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.9.2.jar wordcount input output //运行 wordcount
cat output/part-r-00000 //查看结果

同时再开一个终端在作业运行的时候输入 jps 查看进程

可以看到 Standalone 模式下 Hadoop 只会启动 RunJar 进程来运行整个作业

Pseudo-Distributed 模式

  1. 修改 etc/hadoop/core-site.xml

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    <configuration>
    <property>
    <name>fs.defaultFS</name> <!--配置访问 nameNode 的 URI-->
    <value>hdfs://localhost:9000</value>
    </property>

    <property>
    <name>hadoop.tmp.dir</name> <!--指定临时目录,MapReduce 和 HDFS 的许多路径配置依赖此路径-->
    <value>/home/hadoop/tmp</value>
    </property>
    </configuration>
  2. 修改 etc/hadoop/hdfs-site.xml

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    <configuration>
    <property>
    <name>dfs.replication</name> <!--配置文件的副本数量-->
    <value>1</value>
    </property>

    <property>
    <name>dfs.permissions</name>
    <value>false</value> <!--关闭防火墙-->
    </property>
    </configuration>
  3. 配置免密登录

    1
    2
    3
    4
    ssh localhost 测试能否免密登录(如果能够则跳过以下操作)
    ssh-keygen -t rsa -P '' -f ~/.ssh/id_rsa
    cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
    chmod 0600 ~/.ssh/authorized_keys
  4. 修改 etc/hadoop/hadoop-env.sh(如果提示找不到 JAVA_HOME)

    1
    export JAVA_HOME=/usr/lib/jvm/jre-1.8.0-openjdk.i386 //上面配置的 JAVA_HOME 好像没起作用
  5. 格式化 HDFS

    1
    bin/hdfs namenode -format
  6. 启动 HDFS

    1
    sbin/start-dfs.sh

    启动后输入 jps 看到以下进程即成功,这个时候可以通过 http://localhost:50070/ 访问 NameNode

  7. 运行 wordcount

    1
    2
    3
    4
    5
    6
    bin/hdfs dfs -mkdir /user
    bin/hdfs dfs -mkdir /user/<username>
    bin/hdfs dfs -mkdir /user/<username>/input
    bin/hdfs dfs -put LICENSE.txt /user/<username>/input //创建文件夹并上传文件
    bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.9.2.jar wordcount input output //运行 wordcount
    bin/hdfs dfs -cat output/part-r-00000 //显示结果

    在另一终端输入 jps 可以看到运行时的以下进程

    依旧是用 RunJar 提交,只是读取和写入采用了 HDFS。

  8. 通过 YARN 执行 Job(可选配置,不过为了更接近真实集群还是建议配置)

    • 修改 etc/hadoop/mapred-site.xml

      1
      2
      cp etc/hadoop/mapred-site.xml.template etc/hadoop/mapred-site.xml
      vi etc/hadoop/mapred-site.xml

      增加以下内容

      1
      2
      3
      4
      5
      6
      <configuration>
      <property>
      <name>mapreduce.framework.name</name> <!--表明运行在 YARN 上-->
      <value>yarn</value>
      </property>
      </configuration>
    • 修改 etc/hadoop/yarn-site.xml

      1
      2
      3
      4
      5
      6
      7
      8
      9
      10
      11
      <configuration>
      <property>
      <name>yarn.resourcemanager.hostname</name><!--设置resourcemanager的hostname-->
      <value>localhost</value>
      </property>

      <property>
      <name>yarn.nodemanager.aux-services</name> <!--指定 nodemanager 获取数据的方式-->
      <value>mapreduce_shuffle</value>
      </property>
      </configuration>
    • 启动 YARN

      1
      sbin/start-yarn.sh

      启动成功后可以通过 http://localhost:8088/ 访问 ResourceManager 节点,并且输入 jps 会显示以下进程

      其中 ResourceManager 和 NodeManager 是属于 YARN 的进程。

    • 重复 7 的操作,输入 jps 查询进程

      可以看到新增加了 YarnChild 进程和 MRAppMaster 进程,之所以有两个 YarnChild 进程是因为输入文件夹中存在两个文本文件,这说明了 MapReduce 是通过创建多个进程并行计算的。

Fully-Distributed 模式

集群包括两个节点,节点名分别为 master 和 slave,master 和 slave 的节点配置过程基本一致,以下是配置过程(两个节点差异配置会进行注明,建议先配置好 master 节点的 Hadoop,然后用 scp 命令复制到 slave 节点进行修改。):

  1. 修改 /etc/hosts

    1
    2
    152.136.76.12 master //腾讯云公网ip
    94.191.43.137 slave
  2. 免密登录(⚠️两个节点的登录名必须一致,这里都为 root

    1
    2
    3
    4
    5
    6
    7
    8
    9
    master 节点配置本机免密登录以及移动公钥到子节点
    ssh-keygen -t rsa -P '' -f ~/.ssh/id_rsa
    cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
    chmod 0600 ~/.ssh/authorized_keys
    scp ~/.ssh/id_rsa.pub root@slave:~/

    slave 节点配置 master 节点免密登录
    cat ~/id_rsa.pub >> ~/.ssh/authorized_keys
    chmod 600 ~/.ssh/authorized_keys
  3. 修改 etc/hadoop/core-site.xml

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    <configuration>
    <property>
    <name>fs.defaultFS</name> <!--配置访问 nameNode 的 URI-->
    <value>hdfs://localhost:9000</value>
    </property>

    <property>
    <name>hadoop.tmp.dir</name> <!--指定临时目录,MapReduce 和 HDFS 的许多路径配置依赖此路径-->
    <value>/home/hadoop/tmp</value>
    </property>
    </configuration>
  4. 修改 etc/hadoop/hdfs-site.xml

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    <configuration>
    <property>
    <name>dfs.replication</name> <!--配置文件的副本数量-->
    <value>1</value>
    </property>

    <property>
    <name>dfs.permissions</name>
    <value>false</value> <!--关闭防火墙-->
    </property>

    <property>
    <name>dfs.namenode.secondary.http-address</name>
    <value>slave:50090</value> <!-- 指定secondarynamenode位置 -->
    </property>
    </configuration>
  5. 修改 etc/hadoop/mapred-site.xml

    1
    2
    3
    4
    5
    6
    <configuration>
    <property>
    <name>mapreduce.framework.name</name> <!--表明运行在 YARN 上-->
    <value>yarn</value>
    </property>
    </configuration>
  6. 修改 etc/hadoop/yarn-site.xml

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    <configuration>
    <property>
    <name>yarn.resourcemanager.hostname</name><!--设置resourcemanager的hostname-->
    <value>master</value>
    </property>

    <property>
    <name>yarn.nodemanager.aux-services</name> <!--指定 nodemanager 获取数据的方式-->
    <value>mapreduce_shuffle</value>
    </property>
    </configuration>
  7. 修改 etc/hadoop/hadoop-env.sh

    1
    2
    export JAVA_HOME=/usr/lib/jvm/jre-1.8.0-openjdk.i386 //master 和 slave 填入各自路径
    export HADOOP_LOG_DIR=/root/hadoop/hadoop-2.9.2/logs //可以自己选定
  8. 修改 etc/hadoop/mapred-env.sh

    1
    export JAVA_HOME=/usr/lib/jvm/jre-1.8.0-openjdk.i386
  9. 修改 etc/hadoop/yarn-env.sh

    1
    2
    export JAVA_HOME=/usr/lib/jvm/jre-1.8.0-openjdk.i386 
    export YARN_LOG_DIR=/root/hadoop/hadoop-2.9.2/logs
  10. 修改 etc/hadoop/slaves

    1
    2
    master
    slave
  11. 启动 HDFS 和 YARN

    1
    2
    3
    bin/hdfs namenode -format //首次运行时格式化
    sbin/start-dfs.sh
    sbin/start-yarn.sh

    在 master 和 slave 节点分别输入 jps 后有

    此时可以通过 http://152.136.76.12:8080 (ip 为 master 的公网 ip) 以及 http://152.136.76.12:50070 分别访问 HDFS 的 web 界面和 YARN 的 web 界面,可以看到 HDFS 下有一个 slave 节点,YARN 下有两个节点

  12. 运行 wordcount(与伪分布式中一致)

    1
    2
    3
    4
    5
    6
    bin/hdfs dfs -mkdir /user
    bin/hdfs dfs -mkdir /user/<username>
    bin/hdfs dfs -mkdir /user/<username>/input
    bin/hdfs dfs -put LICENSE.txt /user/<username>/input
    bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.9.2.jar wordcount input output
    bin/hdfs dfs -cat output/part-r-00000

    继续用 jps 查看两台主机的进程

    可以看到集群模式中的进程与伪集群模式中的进程没有区别,唯一的区别在于进程在不同的主机上运行。

错误

这里主要记录配置过程中遇到的一部分错误

  1. Container exited with a non-zero exit code 1. Error file: prelaunch.err.

    该错误是在腾讯云主机上配置的伪集群模式运行 wordcount 时出现的,尝试了网上的一些办法都没有解决。最后采用自己电脑配置再运行一遍成功,可能是因为云主机的配置问题。

  2. 在 YARN 上运行 Java.net.ConnectException: Connection refused

    可能是防火墙的原因,根据 🔗 中的提示解决

  3. 无法外网访问VM中的 Hadoop YARN 的8088端口

    无法通过云主机 ip:8088 访问 YARN 的 Web 页面时,不妨通过 netstat -nlp | grep java 查看当前提供 web 服务的端口,如果 ip 是 127.0.0.1 证明存在问题,需要修改 hosts,具体过程见 🔗

  4. slave: bash: line 0: cd: /root/hadoop/hadoop-2.9.2: No such file or directory

    配置集群模式时出现,主要原因是手动配置 slave 时 Hadoop 存放路径与 master 不一致,只需要将 slave 的 Hadoop 放在与 master 的同一路径下即可解决。

Thanks

  1. Hadoop完全分布式部署
  2. Hadoop三种模式介绍
  3. hadoop的三种运行模式区别及配置详解